Activation of K(ATP) channels suppresses glucose production in humans.
نویسندگان
چکیده
Increased endogenous glucose production (EGP) is a hallmark of type 2 diabetes mellitus. While there is evidence for central regulation of EGP by activation of hypothalamic ATP-sensitive potassium (K(ATP)) channels in rodents, whether these central pathways contribute to regulation of EGP in humans remains to be determined. Here we present evidence for central nervous system regulation of EGP in humans that is consistent with complementary rodent studies. Oral administration of the K(ATP) channel activator diazoxide under fixed hormonal conditions substantially decreased EGP in nondiabetic humans and Sprague Dawley rats. In rats, comparable doses of oral diazoxide attained appreciable concentrations in the cerebrospinal fluid, and the effects of oral diazoxide were abolished by i.c.v. administration of the K(ATP) channel blocker glibenclamide. These results suggest that activation of hypothalamic K(ATP) channels may be an important regulator of EGP in humans and that this pathway could be a target for treatment of hyperglycemia in type 2 diabetes mellitus.
منابع مشابه
Effect of ATP-Dependent K+ Channel Openers and Blockers on Serum Concentration of Aldosterone in Rats
There are many reports for involvement of ATP-sensitive potassium channels in pancreatic, cardiac and vascular smooth muscle cells. This study examined the effect of single doses of K+ channel openers diazoxide, minoxidil and K+ channel blockers chlorpropamide, glibenclamide on serum concentration of aldosterone in male rats. Blood samples were obtained 60 minutes after drug treatment and serum...
متن کاملHypothalamic Protein Kinase C Regulates Glucose Production
OBJECTIVE A selective rise in hypothalamic lipid metabolism and the subsequent activation of SUR1/Kir6.2 ATP-sensitive K(+) (K(ATP)) channels inhibit hepatic glucose production. The mechanisms that link the ability of hypothalamic lipid metabolism to the activation of K(ATP) channels remain unknown. RESEARCH DESIGN AND METHODS To examine whether hypothalamic protein kinase C (PKC) mediates th...
متن کاملنقش کانالهای پتاسیم حساس به ATP (KATP) در آسیب ناشی از ایسکمی و برقراری مجدد جریان خون در کلیه موش صحرایی
The precise mechanism of ischemia reperfusion (IR) injury is not fully understood. Recent studies on Rat myocardium revealed that activation of the K ATP channels inhibits this process. The goal of this study is finding the same effect of K ATP channels on IR injury, in rat kidney. In this study the effects of K ATP agonist (Diazoxide) and K ATP antagonist (Glibenclamide) plus a K ATP i...
متن کاملActivation of Inward Rectifier Potassium Channels in High Salt Impairment of Hydrogen Sulfide-Induced Aortic Relaxation in Rats
Introduction: Hydrogen sulfide (H2S) plays a key role in the regulation of vascular tone and protection of blood vessels against endothelial dysfunction. Since the mechanism of salt impairing H2S-induced vascular relaxation is not fully clear, therefore this study was designed to investigate the role of potassium (K+) channels in the vasodilatory effects of exogenous H2S in rat aortic rings.&nb...
متن کاملHigh glucose regulates the activity of cardiac sarcolemmal ATP-sensitive K+ channels via 1,3-bisphosphoglycerate: a novel link between cardiac membrane excitability and glucose metabolism.
Because we were interested in assessing glucose-mediated regulation of the activity of sarcolemmal ATP-sensitive K(+) channels (K(ATP) channels) (which are closed by physiological levels of intracellular ATP and serve to couple intracellular metabolism with the membrane excitability in the heart) during ischemia, we performed experiments designed to test whether high extracellular glucose would...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 121 12 شماره
صفحات -
تاریخ انتشار 2011